
Vectorizing
Mining maps

TNO GDN | GDIM

Data Science Team & AGE
Cees van Middelkoop, David Demmers, 
Samantha Kim, Joana Esteves Martins, Erik van 
Linden



Agenda

1. Team

2. Background & Scope

3. Features

4. Point data – Regex & Clustering

5. Point data – Vision Language model

6. Shape data – Semantic segmentaiton

7. Results

8. Take aways



Introduction of the Team

David Demmers
- Data Scientist
- Python Developer

Cees van Middelkoop
- Data Scientist
- Python Developer

Samantha Kim
- Scientist Innovator
- Data Assimilation

Erik van Linden
- Geologist
- Expert Mining Maps

Wilfred Visser
- Product Owner

Joop Hasselman
- Manager International 
Projects

Joana Esteves Martins
- Remote Sensing Specialist
- EO Scientist



Background:



• A subset of n 
sliced into 345.323 [1024px * 1024px] imgs.

• Significant variation in maps due to differing mining 
operations over a long timespan.

• With the purpose of; internal research, relative 
probability map of latent mining effects, and external 
engagement & usage.

• Several features each with variation in 
representations: mining panels, galleries, depth values 
and temporal data

Project scope
Digitalisation/ Vectorization of scanned 
mining maps.
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Maps in the real world
Origin Points on top of OSM
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Feature types
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Feature of interest

Galleries & Panels:

Dates & Depths:
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Challenge I: Variety in feature expression
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Challenge II: Real-world data is messy, and sometimes missing



• Original maps are only images

• Extracting text data

Point data extraction:
OCR, Regex & Clustering
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• Original maps are only images

• Extracting text data

• Regex rules for transformations & grouping:

• Several date standards.
(YYYY/ YY/ YYYY-MM/ YY-MM/ Roman YYYY/ 
Roman YY-

• Several depth standards

• Negating possible depths 

• Removing: Outliers, Angles, Yields

• Constraining depths based on carboniferous 
layer & deepest shaft per concession.

• Group point data with clustering.

Point data extraction:
OCR, Regex & Clustering
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Issues with rule based and unsupervised methods.
• Output quantity limited by OCR.

• Non exhaustive rule set for text transformation by Regex.

• Complex geometry of point values → dept values often follow complex shapes.

• Feature engineering to select clusters of interest → hard on large varied nonlinear sets.

Sunk cost fallacy → Pivot to Vision language model for point data extraction & classification.

https://huggingface.co/blog/vlms



• Combining all available data sources.

• Image, OCR, Labelled data

• Constraining the output with OCR.

• More context from the image

• Learning by example

Point data extraction:
Vision Language Model
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Qwen 2.5 72B

Practically:

• Due to time-crunch & budget constraints no 
finetuning or distilling was possible.

• Requirement of the largest available model to 
approach best performance.

• Computational (cost) challenges of large cloud 
compute clusters & their availability.

• Measures of scale. 

• Required JSON format + Hard task = 
hallucinations → Low temperature with invalid 
JSON.

Point data extraction:
Vision Language Model
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• Acquisition of training data

• Multiple scale variation - spatially 
informed Train, Test & Validation split 
selection.

• A base selection of all patch from its 
origin maps.
(To avoid spatial correlation & data 
leakage)

• Labelling service: 4096px x 4096px imgs.

• Down sampling (linear interpolation)

• 2048px → 512px

• 1024px → 512px

• 512px → 512px

Shape data extraction:
Semantic Segmentation
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• Acquisition training data

• Choosing a model architecture U-Net:

• Proven structure for pixel-wise class prediction.

• No multiscale objects.

• Generalisation through abstraction.

• Keep context of higher order features from skip 
connections.

Shape data extraction:
Semantic Segmentation
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• Acquisition training data

• Choosing a model architecture U-Net:

• Proven structure for pixel-wise class prediction.

• No multiscale objects.

• Generalisation through abstraction.

• Keep context of higher order features from skip 
connections.

• Experimenting with scale Trade-off between 
detail & context.

Shape data extraction:
Semantic Segmentation
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Gain detail → lose context
o Slower processing More patches
o Original details are useful for informing 

minority classes. Will trip-up majority 
class prediction.



• Acquisition training data

• Choosing a model architecture U-Net:

• Proven structure for pixel-wise class prediction.

• No multiscale objects.

• Generalisation through abstraction.

• Keep context of higher order features from skip 
connections.

• Experimenting with scale Trade-off between 
detail & context.

Shape data extraction:
Semantic Segmentation
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Lose detail → gain context
o Faster processing Fewer patches

o Averaged out information benefit 
generalization on majority classes



Results
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V1: Original map



V1: All features



V1: Temporal grid, cleaned galleries



Temporal grid & galleries
Projected in x,y,z with corresponding map



V2: Dates



V2: Dates



Depths



V2: Depths



V2: Panels



The role of project management.

Developing custom AI model or even applying pretrained solutions is still a research field.

Using domain knowledge to inform the datascience process.

Fundamentals & SOTA in AI.

Working with data as you are supposed to enabled us run experiments for scale. 

Using the SOTA can be beneficial if the internal knowledge is there.

Take aways of applying & developing AI

Vectorizing Mining Maps
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